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Abstra
t

Approximation by pie
ewise approximatively 
ompa
t Chebyshev sets in

normed linear spa
es is studied. It is shown that any su
h set in lo
ally

uniformly 
onvex Bana
h spa
e is a sun and has 
onne
ted interse
tions

with 
losed balls.
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� 1. Ââåäåíèå è ïîñòàíîâêà çàäà÷è

Íàì ïîíàäîáÿòñÿ ñëåäóþùèå îáîçíà÷åíèÿ. Äëÿ ïðîèçâîëüíîãî ìíî-

æåñòâà M â íåêîòîðîì ëèíåéíîì íîðìèðîâàííîì ïðîñòðàíñòâå X ÷åðåç

̺(y,M) îáîçíà÷èì ðàññòîÿíèå äî ìíîæåñòâà M, ò.å. âåëè÷èíó

inf
z∈M

‖z − y‖ (y ∈ X).

×åðåç PMx îáîçíà÷èì ìíîæåñòâî âñåõ áëèæàéøèõ òî÷åê èç M äëÿ x ∈ X,
ò.å. ìíîæåñòâî

{y ∈ M | ‖y − x‖ = ̺(x,M)}.

Îòîáðàæåíèå PM íàçûâàþò ìåòðè÷åñêîé ïðîåêöèåé íà ìíîæåñòâî M . ×å-

ðåç

B(x, r) = {y ∈ X | ‖y − x‖ 6 r} è S(x, r) = {y ∈ X | ‖y − x‖ = r}

îáîçíà÷èì ñîîòâåòñòâåííî øàð è ñ�åðó ñ öåíòðîì x ðàäèóñà r > 0. Åäè-
íè÷íûå øàð è ñ�åðà îáîçíà÷àþòñÿ B è S, ñîîòâåòñòâåííî. Äàëåå, B̊(x, r) =
{y ∈ X | ‖y − x‖ < r} � îòêðûòûé øàð ñ öåíòðîì x ðàäèóñà r.

Öåëüþ ýòîé ðàáîòû ÿâëÿåòñÿ èçó÷åíèå ãåîìåòðè÷åñêîé ñòðóêòóðû ÷å-

áûø¼âñêèõ ìíîæåñòâ è ñâÿçàííûìè ñ ýòèì ïîíÿòèåì ñâîéñòâ óñòîé÷èâîñòè

ìåòðè÷åñêîé ïðîåêöèè, à òàêæå ñâîéñòâ ëîêàëüíîé è ãëîáàëüíîé ñîëíå÷íî-

ñòè. Ïîñëåäíèå ïîíÿòèÿ çíà÷èìû íå òîëüêî â òåîðèè àïïðîêñèìàöèè (ñì.
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176 Ñâîéñòâà ñîëíå÷íîñòè äëÿ êóñî÷íî êîìïàêòíûõ ìíîæåñòâ

[1℄, [2℄, [3℄, [4℄, [5℄), íî è ïîëåçíû â äðóãèõ îáëàñòÿõ ìàòåìàòèêè. Â ÷àñòíî-

ñòè, ýòè ñâîéñòâà èãðàþò îñîáóþ ðîëü â çàäà÷àõ ãåîìåòðè÷åñêîé îïòèêè

è â âîïðîñàõ ãëàäêîñòè ðåøåíèé óðàâíåíèÿ ýéêîíàëà (ñì. [6℄, [7℄, [8℄, [9℄).

Â ñàìîé òåîðèè ïðèáëèæåíèÿ îíè èãðàþò íå òîëüêî òåõíè÷åñêóþ ðîëü,

íî è äàþò âîçìîæíîñòü ïîëó÷àòü õàðàêòåðèçàöèè ýëåìåíòîâ íàèëó÷øèõ

ïðèáëèæåíèé äëÿ äàëüíåéøåãî èñïîëüçîâàíèÿ â àëãîðèòìàõ ÷èñëåííîé

àïïðîêñèìàöèè.

Âïåðâûå çàäà÷à î ñâÿçè àïïðîêñèìàòèâíîé êîìïàêòíîñòè è ÷åáûø¼â-

ñêèõ ìíîæåñòâ áûëà ðàññìîòðåíà â ðàáîòå Í.Â. Å�èìîâà è Ñ.Á. Ñòå÷-

êèíà [10℄. Îòìåòèì, ÷òî äëÿ àïïðîêñèìàòèâíî êîìïàêòíûõ ÷åáûø¼âñêèõ

ìíîæåñòâ M âûïîëíÿåòñÿ óñëîâèå diamP δ
M(x) → 0 ïðè δ → 0+ (çäåñü

diamN � äèàìåòð ìíîæåñòâà N , P δ
Mx := {y ∈ M | ‖y−x‖ 6 ̺(x,M)+ δ} =

M∩B(x, ̺(x,M)+δ)), ÷òî îòðàæàåò âàæíîå ñâîéñòâî òàêèõ ìíîæåñòâ, ñâÿ-
çàííîå ñ óñòîé÷èâîñòüþ íàèëó÷øåãî ïðèáëèæåíèÿ, ÷òî áåçóñëîâíî âàæíî

â ÷èñëåííûõ ìåòîäàõ. Ñîîòâåòñòâóþùèå çàäà÷è áóäóò ðåøàòüñÿ â êëàññàõ

(CLUR) è (LUR). Íàñ áóäåò èíòåðåñîâàòü ñòðóêòóðà ÷åáûø¼âñêèõ ìíî-

æåñòâ, ñîñòîÿùèõ èç íå áîëåå, ÷åì ñ÷åòíîãî ÷èñëà àïïðîêñèìàòèâíî êîì-

ïàêòíûõ ìíîæåñòâ. Îòìåòèì, ÷òî Îøìàí [11, ñëåäñòâèå 3℄ è íåçàâèñèìî

Ïàíäà è Êàïóð [12℄ ïîêàçàëè, ÷òî â íîðìèðîâàííûõ CLUR-ïðîñòðàíñòâàõ
êëàññ ÷åáûø¼âñêèõ ìíîæåñòâ ñ íåïðåðûâíîé ìåòðè÷åñêîé ïðîåêöèåé ñîâ-

ïàäàåò ñ êëàññîì àïïðîêñèìàòèâíî êîìïàêòíûõ ÷åáûø¼âñêèõ ìíîæåñòâ.

Ïîýòîìó è â íàøåì ñëó÷àå ìîæíî èçó÷àòü ìíîæåñòâà, ñîñòîÿùèå èç àï-

ïðîêñèìàòèâíî êîìïàêòíûõ êóñêîâ èëè èç êóñêîâ ñ íåïðåðûâíîé ìåòðè-

÷åñêîé ïðîåêöèåé íà íèõ, ïîñêîëüêó ðàçíèöû ìåæäó íèìè íå áóäåò. Â

îñíîâíîì ìû ïðîäîëæèì èññëåäîâàíèÿ, íà÷àòûå ðàáîòîé [13℄ àâòîðà, â êî-

òîðîé áûëè ðàññìîòðåíû ñâîéñòâà êóñî÷íî àïïðîêñèìàòèâíî êîìïàêòíûõ

ìíîæåñòâ â ðàâíîìåðíî âûïóêëûõ ïðîñòðàíñòâ, à òàêæå ïîëó÷åíû âàæíûå

ïðèëîæåíèÿ äëÿ îáîáùåííûõ äðîáåé è ðèäæ-�óíêöèé. Ïîñêîëüêó ïëîñ-

êîñòü ñóùåñòâîâàíèÿ â CLUR-ïðîñòðàíñòâå àïïðîêñèìàòèâíî êîìïàêòíà

(ñì., íàïðèìåð, [5℄), òî äëÿ èõ ñ÷åòíîãî îáúåäèíåíèÿ �àêòè÷åñêè áóäóò ïî-

ëó÷åíû èõ ñòðóêòóðíûå ñâîéñòâà. Òàêèì îáðàçîì, íàñòîÿùàÿ ðàáîòà ïðî-

äîëæèò èçó÷åíèÿ ìíîæåñòâ, ïðåäñòàâëåííûõ íå áîëåå ÷åì ñ÷åòíûì îáú-

åäèíåíèåì ïëîñêîñòåé. Óêàçàííûå îáúåêòû èçó÷àëèñü â ìíîãî÷èñëåííûõ

ðàáîòàõ, íàïèñàííûõ â ñîàâòîðñòâå ñ À.�. Àëèìîâûì (ñì. [13℄, [14℄, [15℄,

[16℄, [17℄).

Â íàñòîÿùåé ðàáîòå ìû ïîêàæåì, ÷òî êóñî÷íî àïïðîêñèìàòèâíî êîì-

ïàêòíîå ÷åáûø¼âñêîå ìíîæåñòâî â ëîêàëüíî ðàâíîìåðíî âûïóêëîì áàíà-

õîâîì ïðîñòðàíñòâå áóäåò ÷åáûø¼âñêèì ñîëíöåì (òåîðåìà 1). Òàêæå ýòî

ìíîæåñòâî áóäåò B-ëèíåéíî ñâÿçíûì (ò.å. èìååò ñâÿçíûå ïåðåñå÷åíèÿ ñ

çàìêíóòûìè øàðàìè), à åñëè ïðîñòðàíñòâî äîïîëíèòåëüíî ÿâëÿåòñÿ ãëàä-
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êèì, òî è âûïóêëûì (ñëåäñòâèå 3).

� 2. Ñâîéñòâà êóñî÷íî àïïðîêñèìàòèâíî êîìïàêòíûõ

÷åáûø¼âñêèõ ìíîæåñòâ

Îïðåäåëåíèå 1. Ïóñòü X � ëèíåéíîå íîðìèðîâàííîå ïðîñòðàíñòâî.

Áóäåì ïèñàòü X ∈ (CLUR), åñëè äëÿ ëþáîé ïîñëåäîâàòåëüíîñòè {sn} ⊂ X :

‖sn‖ → 1 (n → ∞) è òî÷êè s ∈ S èç óñëîâèÿ

∥

∥

∥

s+ sn
2

∥

∥

∥
→ 1 (n → ∞)

âûòåêàåò, ÷òî ñóùåñòâóåò ïîäïîñëåäîâàòåëüíîñòü {snk
}, ñõîäÿùàÿñÿ ê íåêî-

òîðîé òî÷êå s0 ∈ S. Åñëè æå èç ýòîãî óñëîâèÿ âûòåêàåò, ÷òî ïîñëåäîâà-

òåëüíîñòü {sn} ñõîäèòñÿ ê òî÷êå s, òî ïðîñòðàíñòâîX íàçûâàåòñÿ ëîêàëüíî

ðàâíîìåðíî âûïóêëûì, è â ýòîì ñëó÷àå ïèøóò, ÷òî X ∈ (LUR). Îòìåòèì,
÷òî (LUR) = (CLUR)∩ (R), ãäå ÷åðåç (R) îáîçíà÷àþò êëàññ ñòðîãî âûïóê-
ëûõ ïðîñòðàíñòâ.

Õîðîøî èçâåñòíî, ÷òî êëàññ (CLUR) ÿâëÿåòñÿ �îñîáîé òî÷êîé� òåîðèè

ïðèáëèæåíèé. Ïî ïîâîäó ðÿäà ðåçóëüòàòîâ îá àïïðîêñèìàòèâíûõ è ãåî-

ìåòðè÷åñêèõ ñâîéñòâàõ ìíîæåñòâ â òàêèõ ïðîñòðàíñòâàõ ñì. [18℄ è [19℄.

Îïðåäåëåíèå 2. Ïóñòü M � íåïóñòîå ïîäìíîæåñòâî (X, ‖ · ‖). Òî÷êà
x ∈ X íàçûâàåòñÿ òî÷êîé àïïðîêñèìàòèâíîé êîìïàêòíîñòè äëÿM , åñëè

äëÿ ëþáîé ïîñëåäîâàòåëüíîñòè {vn} ⊂ X : ‖vn − x| → ̺(x,M) (n → ∞) ñó-
ùåñòâóåò ïîäïîñëåäîâàòåëüíîñòü {vnk

}, ñõîäÿùàÿñÿ â X ê íåêîòîðîé òî÷êå

v0 ∈ M . Îòìåòèì, ÷òî â ýòîì ñëó÷àå v0 ∈ PM(x).

Îïðåäåëåíèå 3. Ïóñòü ∅ 6= M ⊂ X . Òî÷êà x ∈ X \ M íàçûâàåòñÿ

òî÷êîé ñîëíå÷íîñòè, åñëè ñóùåñòâóåò òî÷êà y ∈ PMx 6= ∅ (íàçûâàåìàÿ
òî÷êîé ñâåòèìîñòè) òàêàÿ, ÷òî y ∈ PM((1 − λ)y + λx) äëÿ âñåõ λ > 0
(ýòî ãåîìåòðè÷åñêè îçíà÷àåò, ÷òî èç òî÷êè y èñõîäèò ëó÷ (ñîëíå÷íûé ëó÷),
ïðîõîäÿùèé ÷åðåç x, äëÿ êàæäîé òî÷êè êîòîðîãî y ÿâëÿåòñÿ áëèæàéøåé

èç M .

Òî÷êà x ∈ X \M íàçûâàåòñÿ òî÷êîé ñòðîãîé ñîëíå÷íîñòè, åñëè PMx 6=
∅ è êàæäàÿ òî÷êà y ∈ PMx ÿâëÿåòñÿ òî÷êîé ñâåòèìîñòè. Åñëè âñå òî÷êè èç
K ⊂ X \M ÿâëÿþòñÿ òî÷êàìè ñîëíå÷íîñòè (ñòðîãîé ñîëíå÷íîñòè), òî ìíî-
æåñòâî M íàçûâàþò ñîëíöåì (ñòðîãèì ñîëíöåì) îòíîñèòåëüíî ìíîæåñòâà
K. Â ñëó÷àå, êîãäà K = X \M , ãîâîðÿò, ÷òî M � ñîëíöå (ñòðîãîå ñîëíöå).
×åáûø¼âñêèì ìíîæåñòâîì íàçûâàåòñÿ òàêîå ìíîæåñòâî, äëÿ êîòîðîãî

êàæäàÿ òî÷êà ïðîñòðàíñòâà X èìååò åäèíñòâåííóþ áëèæàéøóþ â ýòîì

ìíîæåñòâå. ×åáûøåâñêèì ñîëíöåì íàçûâàåòñÿ ÷åáûø¼âñêîå ìíîæåñòâî,

ÿâëÿþùååñÿ ñòðîãèì ñîëíöåì.
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Îòìåòèì, ÷òî ñîëíöå â ãëàäêîì ïðîñòðàíñòâå ÿâëÿåòñÿ âûïóêëûì ìíî-

æåñòâîì (ñì. [10℄, [3℄).

Ëåììà 1. Ïóñòü X ∈ (CLUR), M ⊂ X � ÷åáûø¼âñêîå ìíîæåñòâî, z0 ∈
X \M , PM(z0) = {x0}. Ïðåäïîëîæèì, ÷òî ñóùåñòâóþò ïîñëåäîâàòåëüíîñòè
{zn} è {yn}, òàêèå, ÷òî {xn} = PM(zn), yn ∈ [xn, zn] (n ∈ N), è yn → z0,
‖xn − yn‖ → R > 0, ‖yn − zn‖ → r > 0 (n → ∞). Òîãäà ñóùåñòâóþò

ïîäïîñëåäîâàòåëüíîñòè xnk
→ x0, znk

→ w òàêàÿ, ÷òî PM(w) = {x0} (n →
∞). Ïðè ýòîì ‖x0 − z0‖+ ‖z0 − w‖ = R + r = ‖x0 − w‖ = ̺(w,M).

Äîêàçàòåëüñòâî. Áåç ïîòåðè îáùíîñòè áóäåì ñ÷èòàòü, ÷òî z0 = 0. Òî-
ãäà ‖x0‖ = R, ò.ê. ̺(yn,M) → ̺(z0,M) = ‖x0 − z0‖ = ‖x0‖. Ñäåëàåì ïàðàë-

ëåëüíûé ñäâèã îòðåçêà [xn, zn] íà âåêòîð (−yn), è ïîëîæèì x′
n := xn − yn,

z′n := zn − yn, x
′
0 := x0 − yn (n ∈ N). Òîãäà

‖x′
n‖ = ‖xn − yn‖ = R + o(1), ‖z′n‖ = ‖zn − yn‖ = r + o(1).

Ñðàçó æå îòìåòèì, ÷òî ïîñêîëüêó xn ÿâëÿåòñÿ áëèæàéøåé òî÷êîé äëÿ zn
âî ìíîæåñòâå M , òî ‖x′

0 − z′n‖ = ‖x0 − zn‖ > ‖xn − zn‖ = ‖x′
n − z′n‖ (n ∈ N).

Ïóñòü

x̂0 :=
x′
0

‖x′
0‖

=
x′
0

R + o(1)
=

x′
0

R
+ o(1) ∈ S,

x̂n :=
x′
n

‖x′
n‖

=
x′
n

R
+ o(1) ∈ S, ẑn :=

z′n
‖x′

n‖
=

z′n
R

+ o(1).

Ïîëîæèì

λn : =
‖x̂n − 0‖

‖ẑn − x̂n‖
=

‖x′

n‖
R

+ o(1)
‖x′

n−z′n‖
R

+ o(1)
=

‖x′
n‖+ o(1)

‖x′
n − z′n‖+ o(1)

=
R + o(1)

R + r + o(1)
=

R

R + r
+ o(1).

Áåç ïîòåðè îáùíîñòè áóäåì ñ÷èòàòü, ÷òî r < R, à, ñëåäîâàòåëüíî, λn > 1

2

äëÿ äîñòàòî÷íî áîëüøèõ n. Òàêæå áóäåì ïîëàãàòü, ÷òî λn > 1

2
äëÿ âñåõ n,

ò.å. 1− λn < 1

2
äëÿ âñåõ n ∈ N.

Âîçüìåì òî÷êó τn ∈ [x̂n, x̂0] òàê, ÷òîáû 0τn‖x̂0ẑn. Òîãäà â ñèëó ïîäîáèÿ

òðåóãîëüíèêîâ △x̂nτn0 è △x̂nx̂0ẑn âûïîëíåíî ðàâåíñòâî:

‖τn‖ = λn‖x̂0 − ẑn‖ = λn

∥

∥

∥

x′
0 − z′n
R

+ o(1)
∥

∥

∥
> λn

(‖x′
n − z′n‖

R
+ o(1)

)

=
( R

R + r
+ o(1)

)(R + r

R
+ o(1)

)

= 1 + o(1).
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Òàê êàê x̂n, x̂0 ∈ S, òî ‖τn‖ 6 1 (n ∈ N). Ó÷èòûâàÿ ýòî, ìû ïîëó÷èì, ÷òî

‖τn‖ = 1 + o(1). Ïðè ýòîì â ñèëó ïîäîáèÿ òåõ æå òðåóãîëüíèêîâ

‖x̂n−τn‖
‖x̂n−x̂0‖

=

λn, îòêóäà x̂n − τn = λn(x̂n − x̂0), ò.å. τn = (1 − λn)x̂n + λnx̂0 (n ∈ N).
Ïîëîæèì τ̂n := τn

‖τn‖
∈ S, òîãäà ‖τ̂n − τn‖ = o(1), è ëó÷, ïðîõîäÿùèé ÷åðåç

x̂0 è τ̂n, âûõîäèò çà ïðåäåëû øàðà B̊ ïîñëå òî÷êè τ̂n. Íà ýòîì ëó÷å âûáåðåì

òî÷êó an òàê, ÷òî

(

an −
x̂0 + x̂n

2

)
∥

∥

∥
(τ̂n − τn).

Òîãäà òî÷êà an ëåæèò âíå øàðà B̊ è

∥

∥

∥
an −

x̂0+x̂n

2

∥

∥

∥

∥

∥

∥

x̂0+x̂n

2
− x̂0

∥

∥

∥

=
‖τ̂n − τn‖

‖τn − x̂0‖
=

‖τ̂n − τn‖

(1− λn)
∥

∥

∥
x̂n − x̂0

∥

∥

∥

,

è, ñëåäîâàòåëüíî,

∥

∥

∥
an −

x̂0 + x̂n

2

∥

∥

∥
=

2‖τ̂n − τn‖

1− λn

= o(1).

Ïîýòîìó

∣

∣

∣
‖an‖ −

∥

∥

∥

x̂n + x̂0

2

∥

∥

∥

∣

∣

∣
6

∥

∥

∥
an −

x̂n + x̂0

2

∥

∥

∥
= o(1),

è ó÷èòûâàÿ, ÷òî ‖an‖ > 1, ìû ïîëó÷èì, ÷òî ‖ x̂n+x̂0

2
‖ → 1 (n → ∞).

Â ñèëó òîãî, ÷òîX ∈ (CLUR), ñóùåñòâóåò ïîäïîñëåäîâàòåëüíîñòü {x̂nk
},

ñõîäÿùàÿñÿ ê íåêîòîðîé òî÷êå x̂ ∈ S, à, ñëåäîâàòåëüíî, {xnk
} ñõîäèòñÿ ê

íåêîòîðîé òî÷êå x. Òàê êàê {ynk
} ñõîäèòñÿ ê íóëþ, ìû ïîëó÷èì, ÷òî x �

áëèæàéøàÿ òî÷êà äëÿ íóëÿ. È ïîñêîëüêó PM(0) = {x0}, òî x = x0. Ïîýòîìó

xnk
→ x0, znk

→ z0 = −x0
r
R
, ò.å. òî÷êà w = −x0

r
R
èìååò â êà÷åñòâå áëè-

æàéøåé èç M òî÷êó x0. Ïðè ýòîì ‖xnk
− ynk

‖+ ‖ynk
− znk

‖ = ‖xnk
− znk

‖ =
̺(znk

,M) → ̺(w,M) = ‖x0 − w‖ ïðè n → ∞. Ïåðåõîäÿ ê ïðåäåëó â ýòîì

ðàâåíñòâå, ìû ïîëó÷èì, ÷òî

‖x0 − z0‖+ ‖z0 − w‖ = R + r = ‖x0 − w‖ = ̺(w,M).

Ëåììà äîêàçàíà.

Ñëåäñòâèå 1. Ïóñòü â óñëîâèÿõ ëåììû 1 X ∈ (LUR). Òîãäà ê óòâåð-

æäåíèÿì ýòîé ëåììû äîáàâèòñÿ åùå îäíî: z0 ∈ [x0, w] è PM(z) = x0 äëÿ

âñåõ òî÷åê z ∈ [x0, w].

Äîêàçàòåëüñòâî. Ïîñêîëüêó (LUR) = (CLUR)∩ (R), òî èç ñòðîãîé âû-
ïóêëîñòè ïðîñòðàíñòâà X âûòåêàåò, ÷òî óñëîâèå ‖x0 − z0‖ + ‖z0 − w‖ =
R + r = ‖x0 − w‖ = ̺(w,M) âëå÷åò z0 ∈ [x0, w]. Òàê êàê PM(w) = x0, òî

PM(z) = x0 äëÿ âñåõ òî÷åê z ∈ [x0, w]. Ñëåäñòâèå äîêàçàíî.
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Òåîðåìà 1. Ïóñòü X ∈ (LUR) � áàíàõîâî ïðîñòðàíñòâî, M =
⋃

n∈N Mn,

ãäå Mn � àïïðîêñèìàòèâíî êîìïàêòíîå ìíîæåñòâî â X . Òîãäà, åñëè M �

÷åáûø¼âñêîå ìíîæåñòâî, òî M � ñîëíöå.

Äîêàçàòåëüñòâî. Ïðåäïîëîæèì îòïðîòèâíîãî, ÷òîM íå ÿâëÿåòñÿ ñîëí-

öåì. Òîãäà ñóùåñòâóåò òàêàÿ òî÷êà x0 ∈ X\M , ÷òî äëÿ òî÷êè y0, òàêîé, ÷òî
{y0} = PM(x0), íà ëó÷å ℓ0 := {y0+λ(x0−y0) | λ > 1} íåò òî÷åê, äëÿ êîòîðûõ
òî÷êà y0 ÿâëÿåòñÿ áëèæàéøåé â M . Îòìåòèì, ÷òî â LUR-ïðîñòðàíñòâå âñå

òî÷êè, ëåæàùèå íà ïîëóèíòåðâàëå (x, y], ãäå x ∈ X\M , à y � åå áëèæàéøàÿ
â M , ÿâëÿþòñÿ òî÷êàìè àïïðîêñèìàòèâíîé êîìïàêòíîñòè äëÿ ìíîæåñòâà

M , è y ÿâëÿåòñÿ äëÿ ýòèõ òî÷åê åäèíñòâåííîé áëèæàéøåé (ñì., íàïðè-

ìåð, [18℄). Ââåäåì îáîçíà÷åíèå K(N) :=
⋃N

n=1
Mn.

1◦. Äëÿ ëþáîãî íîìåðà N0 ∈ N è ïðîèçâîëüíîãî ÷èñëà ε > 0 íàéäåò-

ñÿ òî÷êà x′
0 ∈ Oε(x0), äëÿ êîòîðîé ̺(x′

0,
⋃

n>N0
Mn) 6 ̺(x′

0,M \ K(N0)) <
̺(x′

0, K(N0)). Ýòî âûòåêàåò èç òîãî, ÷òî ìíîæåñòâî K(N0) (êàê êîíå÷íîå

îáúåäèíåíèå àïïðîêñèìàòèâíî êîìïàêòíûõ ìíîæåñòâ) ÿâëÿåòñÿ àïïðîê-

ñèìàòèâíî êîìïàêòíûì. Ïîýòîìó, åñëè ̺(x,M) = ̺(x,K(N0)) äëÿ âñåõ

òî÷åê x ∈ Oε(x0), òî â ñèëó àïïðîêñèìàòèâíîé êîìïàêòíîñòè ìíîæåñòâà

K(N0) îäíà èç áëèæàéøèõ òî÷åê äëÿ M ëåæèò â K(N0), à òàê êàê M
� ÷åáûø¼âñêîå ìíîæåñòâî, òî äëÿ êàæäîé òî÷êè x ∈ Oε(x0) áëèæàéøàÿ
åäèíñòâåííà è ëåæèò â K(N0). Òåì ñàìûì ìåòðè÷åñêàÿ ïðîåêöèÿ PM �

îäíîçíà÷íîå íåïðåðûâíîå îòîáðàæåíèå íà Oε(x0). Îòñþäà ñëåäóåò (ñì. [8,
çàìå÷àíèå 3℄), ÷òî âñå òî÷êè îêðåñòíîñòè Oε(x0) ÿâëÿþòñÿ òî÷êàìè �ëî-

êàëüíîé ñîëíå÷íîñòè�, è, ñëåäîâàòåëüíî, ñóùåñòâóåò òî÷êà x1
0: òàêàÿ, ÷òî

PM(x1
0) = {y0} è x0 ∈ [y0, x

1
0], ò.å. x

1
0 ∈ ℓ0, ÷åãî íå äîëæíî áûòü.

Ñëåäîâàòåëüíî, äëÿ ëþáîãî íîìåðà N0 ∈ N è ïðîèçâîëüíîãî ε > 0
íàéäåòñÿ òî÷êà x0

0 ∈ Oε(x0) òàêàÿ, ÷òî ̺(x0
0, K(N0)) > ̺(x0

0,M). Ïîýòîìó
íàéäåòñÿ ñõîäÿùàÿñÿ ê òî÷êå x0 ïîñëåäîâàòåëüíîñòü {x1

m}, äëÿ êîòîðîé

̺(x1
m,M) < ̺(x1

m, K(N0)). Ïóñòü y1m � áëèæàéøàÿ òî÷êà äëÿ òî÷êè x1
m âî

ìíîæåñòâå M , òîãäà y1m ∈ M \K(N0). Ïóñòü θ1m � íàèáîëåå óäàëåííàÿ îò

òî÷êè x1
m íà ëó÷å {y1m + λ(x1

m − y1m) | λ > 1} ñðåäè òî÷åê, äëÿ êîòîðûõ y1m
ÿâëÿåòñÿ áëèæàéøåé. Â ýòîì ñëó÷àå âñå òî÷êè èç ïîëóèíòåðâàëà (θ1m, y

1
m]

ÿâëÿþòñÿ òî÷êàìè àïïðîêñèìàòèâíîé êîìïàêòíîñòè, ó êîòîðûõ y1m � åäèí-

ñòâåííàÿ áëèæàéøàÿ â M , è ̺(θ1m,M) < ̺(θ1m, K(N0)). Êðîìå òîãî, â ñèëó
ëåììû 1 è ñëåäñòâèÿ 1 èìååì ‖x1

m − θ1m‖ → 0 (m → ∞), à, ñëåäîâàòåëüíî,
‖θ1m−x0‖ → 0 (m → ∞). Âûáåðåì m òàê, ÷òîáû ‖θ1m−x0‖ < ε0/3. Âîçüìåì
ε1 ∈ (0, ε0/3) òàê, ÷òîáû ̺(x,M) < ̺(x,K(N0)) äëÿ âñåõ òî÷åê x ∈ Oε1(θ

1
m).

Ïîëîæèì x1 := θ1m.
2◦. Îáùèé øàã èíäóêöèè. Ïóñòü ïîñòðîåíû òî÷êè xn−1, ÷èñëà Nn−1 ∈ N

è εn−1 > 0. Âîçüìåì ïðîèçâîëüíîå ÷èñëî Nn ∈ N, Nn > Nn−1. Òàê æå, êàê è

âûøå, äëÿ ëþáîãî ε ∈ (0, εn−1/3) íàéäåòñÿ òî÷êà xn
0 ∈ Oε(xn−1) òàêàÿ, ÷òî

̺(xn
0 ,M) < ̺(xn

0 , K(Nn)). Îòñþäà ñóùåñòâóåò ñõîäÿùàÿñÿ ê xn−1 ïîñëåäî-
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âàòåëüíîñòü {xn
m}, äëÿ êîòîðîé ̺(xn

m,M) < ̺(xn
m, K(Nn)). Ïóñòü ynm � áëè-

æàéøàÿ òî÷êà äëÿ xn
m âM , è θnm � íàèáîëåå óäàëåííàÿ îò ynm òî÷êà íà ëó÷å

{ynm + λ(xn
m − ynm) | λ > 1} ñðåäè òåõ òî÷åê, äëÿ êîòîðûõ ynm ÿâëÿåòñÿ áëè-

æàéøåé òî÷êîé â M . Â ýòîì ñëó÷àå âñå òî÷êè èç ïîëóèíòåðâàëà (θnm, y
n
m]

ÿâëÿþòñÿ òî÷êàìè àïïðîêñèìàòèâíîé êîìïàêòíîñòè, äëÿ êîòîðûõ ynm �

åäèíñòâåííàÿ áëèæàéøàÿ â M , è ̺(θnm,M) < ̺(θnm, K(Nn)). Êðîìå òîãî, â
ñèëó ëåììû 1 è ñëåäñòâèÿ 1 èìååì ‖xn

m−θnm‖ → 0 (m → ∞), à, ñëåäîâàòåëü-
íî, ‖θnm−xn−1‖ → 0 (m → ∞). Âûáåðåì m òàê, ÷òîáû ‖θnm−xn−1‖ < εn−1/3.
Âîçüìåì εn ∈ (0, εn−1/3) òàê, ÷òîáû ̺(x,M) < ̺(x,K(Nn)) äëÿ âñåõ òî÷åê

x ∈ Oεn(θ
n
m). Ïîëîæèì xn := θnm.

3◦. Òåì ñàìûì, ïî èíäóêöèè áóäåò ïîñòðîåíà ïîñëåäîâàòåëüíîñòè {xn} ⊂
X è ïîñëåäîâàòåëüíîñòü ïîëîæèòåëüíûõ ÷èñåë {εn} òàêèõ, ÷òî ‖xm −
xm−1‖ < εm−1

3
, 0 < εm < εm−1

3
è Oεm+1

(xm+1) ⊂ Oεm(xm) (m ∈ N). Òîãäà
ðÿä

∑∞
m=1

‖xm − xm−1‖ ñõîäèòñÿ, è, ñëåäîâàòåëüíî, â ñèëó ïîëíîòû ïðî-

ñòðàíñòâà X ñõîäèòñÿ ðÿä x0 +
∑∞

m=1
(xm − xm−1) =: x0

. Òîãäà

‖x0 − xk‖ 6

∞
∑

m=k+1

‖xm − xm−1‖ <

∞
∑

m=k+1

εm−1

3
6 εk

∞
∑

m=1

3−m = εk/2,

ò.å. x0 ∈ Oεk/2(xk) (k ∈ N). Ïîñêîëüêó áëèæàéøèå òî÷êè äëÿ âñåõ x ∈
Oεk(xk) ëåæàò âî ìíîæåñòâå M \K(Nk−1) ⊂

⋃

n>k Mn, òî äëÿ x0
íåò áëè-

æàéøèõ âî ìíîæåñòâå M . Ýòî ïðîòèâîðå÷èò óñëîâèþ, ÷òî M � ÷åáûø¼â-

ñêîå ìíîæåñòâî. Ñëåäîâàòåëüíî, ìíîæåñòâî M ÿâëÿåòñÿ ñîëíöåì. Òåîðåìà

äîêàçàíà.

Ñëåäñòâèå 2. Ïóñòü X ∈ (LUR) � áàíàõîâî ïðîñòðàíñòâî, M =
⋃∞

n=1
Mn, ãäå Mn � àïïðîêñèìàòèâíî êîìïàêòíîå ìíîæåñòâî â X (n ∈ N).

Òîãäà, åñëè M � ÷åáûø¼âñêîå ìíîæåñòâî, òî ìåòðè÷åñêàÿ ïðîåêöèÿ PM

íà M íåïðåðûâíà.

Äîêàçàòåëüñòâî. Åñëè x ∈ M , òî ̺(w,M) 6 ‖w−x‖ < ε äëÿ âñåõ òî÷åê
w ∈ Oε(x). Ñëåäîâàòåëüíî, PM(w) ⊂ O2ε(x), åñëè w → x, òî PM(w) →
PM(x) = {x}. Òàêèì îáðàçîì, ìåòðè÷åñêàÿ ïðîåêöèÿ íåïðåðûâíà âî âñåõ

òî÷êàõ ìíîæåñòâà M .

Ïóñòü òåïåðü x ∈ X\M . Ïðåäïîëîæèì îò ïðîòèâíîãî, ÷òî îòîáðàæåíèå

PM ðàçðûâíî â òî÷êå x. Òîãäà ñóùåñòâóåò ïîñëåäîâàòåëüíîñòü {xn} ⊂ X
òàêàÿ, ÷òî xn → x (n → ∞), è ‖PM(xn)−PM(x)‖ > 2δ äëÿ íåêîòîðîãî δ > 0
è âñåõ n ∈ N. Ïóñòü {y} = PM(x), {yn} = PM(xn) (n ∈ N). Ïîñêîëüêó â ñèëó
òåîðåìû 1 ìíîæåñòâî M ÿâëÿåòñÿ ñîëíöåì, òî ëó÷ {yn+λ(xn−yn) | λ > 0}
ñîñòîèò èç òî÷åê, äëÿ êîòîðûõ áëèæàéøåé â M ÿâëÿåòñÿ òî÷êà yn (n ∈ N).
Îòñþäà â ñèëó ëåììû 1 ‖yn − y‖ → 0 ïðè (n → ∞), ÷åãî íå äîëæíî áûòü.
Ýòî ïðîòèâîðå÷èå çàâåðøàåò äîêàçàòåëüñòâî ñëåäñòâèÿ.
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Îïðåäåëåíèå 4. Ìíîæåñòâî B-ëèíåéíî ñâÿçíî (B̊-ëèíåéíî ñâÿçíî),
åñëè åãî ïåðåñå÷åíèå ìíîæåñòâà M ñ ëþáûì çàìêíóòûì (îòêðûòûì) øà-
ðîì ëèíåéíî ñâÿçíî. Îòìåòèì, ÷òî åñëè ìíîæåñòâî B-ëèíåéíî ñâÿçíî, òî

îíî òàêæå è B̊-ëèíåéíî ñâÿçíî.

Ñëåäñòâèå 3. Ïóñòü X ∈ (LUR) � áàíàõîâî ïðîñòðàíñòâî, M =
⋃∞

n=1
Mn, ãäå Mn � àïïðîêñèìàòèâíî êîìïàêòíîå ìíîæåñòâî â X (n ∈ N),

è M � ÷åáûø¼âñêîå ìíîæåñòâî. Òîãäà ìíîæåñòâî M B-ëèíåéíî ñâÿçíî, à
åñëè äîïîëíèòåëüíî X � ãëàäêîå ïðîñòðàíñòâî, òî M âûïóêëî.

Äîêàçàòåëüñòâî. Ïóñòü N := M ∩ B(x, r), ãäå x ∈ X , r > 0 � ïðîèç-

âîëüíû, òîãäà íåïðåðûâíûé îáðàç ëîìàíîé z1xz2 ïðè íåïðåðûâíîì îòîá-

ðàæåíèè PM ñîåäèíÿåò ëþáûå òî÷êè z1, z2 ∈ N , ò.å. ìíîæåñòâî N ëèíåéíî

ñâÿçíî. Ïîñêîëüêó M ÿâëÿåòñÿ ñîëíöåì â ñèëó òåîðåìû 1, òî â ãëàäêîì

ïðîñòðàíñòâå X îíî âûïóêëî. Ñëåäñòâèå äîêàçàíî.

Â [17, òåîðåìà 4.1℄) äîêàçàíî, ÷òî ÷åáûø¼âñêîå ìíîæåñòâî, ïðåäñòàâ-

ëÿþùåå ñîáîé ñ÷åòíîå îáúåäèíåíèå ïëîñêîñòåé è òàêîå, ÷òî íè îäíà èç

ïëîñêîñòåé íå ñîäåðæèò äðóãîé, íå ÿâëÿåòñÿ B-ñâÿçíûì ìíîæåñòâîì, à,

ñëåäîâàòåëüíî, íå ÿâëÿåòñÿ B-ëèíåéíî ñâÿçíûì ìíîæåñòâîì. Îòñþäà âû-

òåêàåò ñëåäóþùåå óòâåðæäåíèå.

Ñëåäñòâèå 4. Ïóñòü X ∈ (LUR) � áàíàõîâî ïðîñòðàíñòâî, M =
⋃∞

n=1
Ln, ãäå Ln � ïëîñêîñòè ñóùåñòâîâàíèÿ, è íè îäíà èç íèõ íå ñîäåðæèò

äðóãóþ. Òîãäà ìíîæåñòâî M íå ìîæåò áûòü ÷åáûø¼âñêèì.

Áëàãîäàðíîñòü. Èññëåäîâàíèå ïîääåðæàíî Ìîñêîâñêèì öåíòðîì �óí-

äàìåíòàëüíîé è ïðèêëàäíîé ìàòåìàòèêè Ì�Ó èìåíè Ì.Â. Ëîìîíîñîâà ïî

ñîãëàøåíèþ �075-15-2025-345.
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